
2026-01-29 07:05 1/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Table of Contents
Playing .mod tracker music 2 ..

2026-01-29 07:05 2/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Playing .mod tracker music

The sound of 16 bit. When programmers made music.

From the era when you had CPU power to just play PCM samples.

Not enough CPU to decompress a full file, but not enough storage to store a full PCM track.

Enter mod/xm3 files.

It's like midi but way more cooked.

You pick a set number of PCM samples which you will use to make your music.

Say a piano sound, a drum sound, so on. Encode those 8 bit or 16 bit PCM.

Then, you have a set number of channels, 4 for mod.

You pick which sample to load, at what volume, and what pitch. That's all.

So, 4 things play at once, you have 16 sounds you picked, you can make a full song!

You can use things like miltytracker but that is boring.

How small would the files and a decoder be? I wanted to try this on a low power microcontroller.

But first, the proof of concept in Linux.

In 500 lines, I was able to read the file and pipe it to ALSA.

Compiled binary on Linux is 21 KiB, meaning without alsa and on microcontroller, we can make it happen.

The song file I'm using is also only 60 KiB! I'm sure there may be a way to turn MIDI into MOD adding
more music.
Or make a neural net to pick 16 samples out of a song and create the .mod file.

It's not perfect, it only plays a subset of files, and my timings are off, but not terrible for an hour of effort.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <alsa/asoundlib.h>

// MOD file constants
#define MAX_SAMPLES 31
#define NUM_CHANNELS 4

2026-01-29 07:05 3/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

#define ROWS_PER_PATTERN 64
#define BYTES_PER_NOTE 4
#define SAMPLE_RATE 44100
#define BUFFER_SIZE 1024
#define BASE_TEMPO 125 // Default MOD tempo in BPM

// Note period table for Amiga frequency conversion
const uint16_t period_table[] = {
 // C C# D D# E F F# G G# A A# B
 856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453, // Octave 1
 428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226, // Octave 2
 214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113 // Octave 3
};

// Pattern data structure
typedef struct {
 uint8_t sample; // Sample number (0-31)
 uint16_t period; // Note period
 uint8_t effect; // Effect number
 uint8_t param; // Effect parameter
} Note;

// Sample data structure
typedef struct {
 char name[22];
 uint16_t length; // Length in words (2 bytes)
 uint8_t finetune; // Finetune value (0-15)
 uint8_t volume; // Default volume (0-64)
 uint16_t repeat_point; // Repeat point in words
 uint16_t repeat_length; // Repeat length in words
 int8_t *data; // Sample data (8-bit signed)
} Sample;

// MOD file structure
typedef struct {
 char title[21];
 Sample samples[MAX_SAMPLES];
 uint8_t song_length; // Number of positions
 uint8_t positions[128]; // Pattern sequence
 uint8_t num_patterns; // Number of patterns (calculated)
 Note (*patterns)[ROWS_PER_PATTERN][NUM_CHANNELS]; // Pattern data
} MODFile;

// Channel state
typedef struct {
 uint16_t period; // Current note period
 uint8_t sample_num; // Current sample number
 uint8_t volume; // Current volume (0-64)

2026-01-29 07:05 4/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 uint32_t sample_pos; // Position in sample (fixed point: 16.16)
 uint32_t sample_increment; // Sample position increment per tick
 uint8_t effect; // Current effect
 uint8_t param; // Effect parameter
 uint8_t porta_target; // Portamento target period
 uint8_t vibrato_position; // Vibrato wave position
 uint8_t tremolo_position; // Tremolo wave position
} ChannelState;

// Read a 2-byte big-endian value
uint16_t read_big_endian_16(const uint8_t *data) {
 return (data[0] << 8) | data[1];
}

// Convert Amiga period to frequency
float period_to_freq(uint16_t period) {
 if (period == 0) return 0;
 return 7159090.5f / (period * 2);
}

// Print a message and exit if ALSA returns an error
void check_alsa_error(int err, const char *msg) {
 if (err < 0) {
 fprintf(stderr, "%s: %s\n", msg, snd_strerror(err));
 exit(EXIT_FAILURE);
 }
}

// Add this function before main()
int calculate_tick_samples(int tempo) {
 // Calculate samples per tick based on tempo
 // 2500 / tempo = milliseconds per tick
 // (ms * sample_rate) / 1000 = samples per tick
 return (2500 * SAMPLE_RATE) / (tempo * 1000);
}

// Load a MOD file
int load_mod_file(const char *filename, MODFile *mod) {
 FILE *file = fopen(filename, "rb");
 if (!file) return 0;

 // Get file size
 fseek(file, 0, SEEK_END);
 long file_size = ftell(file);
 fseek(file, 0, SEEK_SET);

 // Read the entire file into memory

http://www.opengroup.org/onlinepubs/009695399/functions/fprintf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fseek.html
http://www.opengroup.org/onlinepubs/009695399/functions/ftell.html
http://www.opengroup.org/onlinepubs/009695399/functions/fseek.html

2026-01-29 07:05 5/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 uint8_t *data = (uint8_t*)malloc(file_size);
 if (!data) {
 fclose(file);
 return 0;
 }

 fread(data, 1, file_size, file);
 fclose(file);

 // Read title
 memcpy(mod->title, data, 20);
 mod->title[20] = '\0';

 // Read sample information
 uint8_t *ptr = data + 20;
 for (int i = 0; i < MAX_SAMPLES; i++) {
 memcpy(mod->samples[i].name, ptr, 22);
 mod->samples[i].name[22] = '\0';
 ptr += 22;

 mod->samples[i].length = read_big_endian_16(ptr) * 2; // Convert to
bytes
 ptr += 2;

 mod->samples[i].finetune = *ptr++;
 mod->samples[i].volume = *ptr++;

 mod->samples[i].repeat_point = read_big_endian_16(ptr) * 2; // Convert
to bytes
 ptr += 2;

 mod->samples[i].repeat_length = read_big_endian_16(ptr) * 2; //
Convert to bytes
 ptr += 2;
 }

 // Read song information
 mod->song_length = *ptr++;
 ptr++; // Skip unused byte

 memcpy(mod->positions, ptr, 128);
 ptr += 128;

 // Skip 4 bytes (format identifier M.K. or similar)
 ptr += 4;

 // Determine number of patterns
 mod->num_patterns = 0;

http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fread.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026-01-29 07:05 6/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 for (int i = 0; i < mod->song_length; i++) {
 if (mod->positions[i] > mod->num_patterns) {
 mod->num_patterns = mod->positions[i];
 }
 }
 mod->num_patterns++;

 // Allocate and read pattern data
 mod->patterns = (Note (*)[ROWS_PER_PATTERN][NUM_CHANNELS])malloc(
 mod->num_patterns * ROWS_PER_PATTERN * NUM_CHANNELS * sizeof(Note));

 for (int p = 0; p < mod->num_patterns; p++) {
 for (int r = 0; r < ROWS_PER_PATTERN; r++) {
 for (int c = 0; c < NUM_CHANNELS; c++) {
 uint8_t b0 = *ptr++;
 uint8_t b1 = *ptr++;
 uint8_t b2 = *ptr++;
 uint8_t b3 = *ptr++;

 // Decode note data
 uint16_t period = ((b0 & 0x0F) << 8) | b1;
 uint8_t sample = (b0 & 0xF0) | (b2 >> 4);

 mod->patterns[p][r][c].period = period;
 mod->patterns[p][r][c].sample = sample;
 mod->patterns[p][r][c].effect = b2 & 0x0F;
 mod->patterns[p][r][c].param = b3;
 }
 }
 }

 // Read sample data
 for (int i = 0; i < MAX_SAMPLES; i++) {
 if (mod->samples[i].length > 0) {
 mod->samples[i].data = (int8_t*)malloc(mod->samples[i].length);
 memcpy(mod->samples[i].data, ptr, mod->samples[i].length);
 ptr += mod->samples[i].length;
 } else {
 mod->samples[i].data = NULL;
 }
 }

 free(data);
 return 1;
}

// Release MOD file resources
void free_mod_file(MODFile *mod) {

http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/free.html

2026-01-29 07:05 7/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 for (int i = 0; i < MAX_SAMPLES; i++) {
 if (mod->samples[i].data) {
 free(mod->samples[i].data);
 mod->samples[i].data = NULL;
 }
 }
 if (mod->patterns) {
 free(mod->patterns);
 mod->patterns = NULL;
 }
}

// Render simple ASCII visualization
void render_visualization(ChannelState *channels, MODFile *mod, int position,
int row) {
 printf("\033[H\033[J"); // Clear screen

 // Display module info
 printf("Module: %s\n", mod->title);
 printf("Position: %d/%d Pattern: %d Row: %d/64\n\n",
 position, mod->song_length, mod->positions[position], row);

 // Display channels
 printf("Channel | Sample | Period | Volume | Effect\n");
 printf("--------|---------|--------|--------|--------\n");

 for (int c = 0; c < NUM_CHANNELS; c++) {
 const char *sample_name = "<none>";
 if (channels[c].sample_num > 0 && channels[c].sample_num <=
MAX_SAMPLES) {
 sample_name = mod->samples[channels[c].sample_num-1].name;
 }

 printf(" %d | %-7d | %6d | %6d | %X%02X %s\n",
 c+1, channels[c].sample_num, channels[c].period,
 channels[c].volume, channels[c].effect, channels[c].param,
 sample_name);
 }

 // Simple volume meters
 printf("\nVolume Meters:\n");
 for (int c = 0; c < NUM_CHANNELS; c++) {
 printf("[%d] ", c+1);

 // Only show if channel is active
 if (channels[c].period > 0 && channels[c].sample_num > 0) {
 int vol_bars = (channels[c].volume * 30) / 64;
 for (int i = 0; i < 30; i++) {

http://www.opengroup.org/onlinepubs/009695399/functions/free.html
http://www.opengroup.org/onlinepubs/009695399/functions/free.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026-01-29 07:05 8/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 printf("%c", i < vol_bars ? '#' : '.');
 }
 } else {
 printf("<inactive>");
 }
 printf("\n");
 }

 fflush(stdout);
}

// Process one tick of audio
void process_tick(MODFile *mod, ChannelState *channels, int16_t *buffer, int
buffer_size) {
 // Clear buffer
 memset(buffer, 0, buffer_size * sizeof(int16_t));

 // Mix channels
 for (int i = 0; i < buffer_size; i++) {
 int32_t mixed = 0;

 for (int c = 0; c < NUM_CHANNELS; c++) {
 if (channels[c].period > 0 && channels[c].sample_num > 0) {
 int sample_idx = channels[c].sample_num - 1;

 if (sample_idx >= 0 && sample_idx < MAX_SAMPLES &&
 mod->samples[sample_idx].data &&
 mod->samples[sample_idx].length > 0) {

 // Get current sample position
 uint32_t pos = channels[c].sample_pos >> 16;

 if (pos < mod->samples[sample_idx].length) {
 // Apply volume and mix
 int sample_val = mod->samples[sample_idx].data[pos];
 mixed += ((sample_val * channels[c].volume) / 64) * 4;
// Increase gain by 4x

 // Update position
 channels[c].sample_pos +=
channels[c].sample_increment;

 // Handle looping
 if (mod->samples[sample_idx].repeat_length > 2) {
 uint32_t loop_end =
mod->samples[sample_idx].repeat_point +
mod->samples[sample_idx].repeat_length;

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/fflush.html
http://www.opengroup.org/onlinepubs/009695399/functions/memset.html

2026-01-29 07:05 9/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 if ((channels[c].sample_pos >> 16) >= loop_end) {
 channels[c].sample_pos =
mod->samples[sample_idx].repeat_point << 16;
 }
 } else if ((channels[c].sample_pos >> 16) >=
mod->samples[sample_idx].length) {
 // Stop playback if no loop
 channels[c].sample_pos = 0;
 channels[c].period = 0;
 }
 }
 }
 }
 }

 // Clamp and store in buffer
 if (mixed > 32767) mixed = 32767;
 if (mixed < -32768) mixed = -32768;

 // Scale appropriately for 16-bit output
 buffer[i] = mixed;
 }
}

// Process a row of the pattern
void process_row(MODFile *mod, ChannelState *channels, int position, int row)
{
 int pattern = mod->positions[position];

 // Process each channel
 for (int c = 0; c < NUM_CHANNELS; c++) {
 Note note = mod->patterns[pattern][row][c];

 // Process sample change
 if (note.sample > 0) {
 channels[c].sample_num = note.sample;
 channels[c].volume = mod->samples[note.sample-1].volume;
 }

 // Process note
 if (note.period != 0) {
 if (note.effect != 0x3) { // Skip if portamento effect
 channels[c].period = note.period;
 channels[c].sample_pos = 0;

 // Calculate sample increment based on period
 float freq = period_to_freq(note.period);
 channels[c].sample_increment = (uint32_t)((freq * 65536.0f) /

2026-01-29 07:05 10/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

SAMPLE_RATE);
 }
 }

 // Save effect and param
 channels[c].effect = note.effect;
 channels[c].param = note.param;

 // Process effects
 switch (note.effect) {
 case 0x0: // Arpeggio
 // Handled in tick processing
 break;

 case 0xA: // Volume slide
 // Handled in tick processing
 break;

 case 0xC: // Set volume
 if (note.param <= 64) {
 channels[c].volume = note.param;
 }
 break;

 case 0xD: // Pattern break
 // Handled by main loop
 break;

 case 0xF: // Set speed
 // Handled by main loop
 break;
 }
 }
}

int main(int argc, char **argv) {
 if (argc < 2) {
 printf("Usage: %s <input.mod>\n", argv[0]);
 return 1;
 }

 // ALSA setup
 snd_pcm_t *pcm_handle;
 int err;

 // Open PCM device for playback
 err = snd_pcm_open(&pcm_handle, "default", SND_PCM_STREAM_PLAYBACK, 0);
 check_alsa_error(err, "Unable to open PCM device");

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026-01-29 07:05 11/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 // Set parameters
 snd_pcm_hw_params_t *hw_params;
 snd_pcm_hw_params_alloca(&hw_params);

 err = snd_pcm_hw_params_any(pcm_handle, hw_params);
 check_alsa_error(err, "Cannot initialize hardware parameter structure");

 err = snd_pcm_hw_params_set_access(pcm_handle, hw_params,
SND_PCM_ACCESS_RW_INTERLEAVED);
 check_alsa_error(err, "Cannot set access type");

 err = snd_pcm_hw_params_set_format(pcm_handle, hw_params,
SND_PCM_FORMAT_S16_LE);
 check_alsa_error(err, "Cannot set sample format");

 err = snd_pcm_hw_params_set_rate_near(pcm_handle, hw_params, &(unsigned
int){SAMPLE_RATE}, 0);
 check_alsa_error(err, "Cannot set sample rate");

 err = snd_pcm_hw_params_set_channels(pcm_handle, hw_params, 1);
 check_alsa_error(err, "Cannot set channel count");

 err = snd_pcm_hw_params_set_buffer_size(pcm_handle, hw_params, BUFFER_SIZE
* 4);
 check_alsa_error(err, "Cannot set buffer size");

 err = snd_pcm_hw_params(pcm_handle, hw_params);
 check_alsa_error(err, "Cannot set parameters");

 err = snd_pcm_prepare(pcm_handle);
 check_alsa_error(err, "Cannot prepare audio interface for use");

 // Load MOD file
 MODFile mod;
 if (!load_mod_file(argv[1], &mod)) {
 printf("Failed to load MOD file: %s\n", argv[1]);
 snd_pcm_close(pcm_handle);
 return 1;
 }

 printf("Playing: %s\n", mod.title);
 printf("Song length: %d positions\n", mod.song_length);
 printf("Samples: %d\n", MAX_SAMPLES);

 // Initialize channel state
 ChannelState channels[NUM_CHANNELS] = {0};

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026-01-29 07:05 12/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 // Player state
 int position = 0; // Position in the song
 int row = 0; // Row in the pattern
 int ticks_per_row = 5; // Default speed (ticks per row)
 int current_tick = 0; // Current tick within the row
 int tempo = 125; // Default tempo (BPM)

 // Audio buffer
 int16_t buffer[BUFFER_SIZE];

 // Main playback loop
 while (position < mod.song_length) {
 if (current_tick == 0) {
 // Process new row
 process_row(&mod, channels, position, row);

 // Show visualization
 render_visualization(channels, &mod, position, row);

 // Check for pattern break effects
 for (int c = 0; c < NUM_CHANNELS; c++) {
 if (channels[c].effect == 0xD) {
 row = ROWS_PER_PATTERN - 1; // Force next row to trigger
position change
 break;
 } else if (channels[c].effect == 0xF && channels[c].param <=
0x1F) {
 // Set speed (ticks per row)
 if (channels[c].param > 0) {
 ticks_per_row = channels[c].param;
 }
 } else if (channels[c].effect == 0xF && channels[c].param >=
0x20) {
 // Set tempo (BPM)
 tempo = channels[c].param;
 }
 }
 }

 // Process and play audio for this tick
 process_tick(&mod, channels, buffer, BUFFER_SIZE);

 // Write to ALSA
 err = snd_pcm_writei(pcm_handle, buffer, BUFFER_SIZE);
 if (err == -EPIPE) {
 // EPIPE means underrun
 snd_pcm_prepare(pcm_handle);
 } else if (err < 0) {

2026-01-29 07:05 13/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

 printf("Error from writei: %s\n", snd_strerror(err));
 }

 // Update tick counter
 current_tick++;
 if (current_tick >= ticks_per_row) {
 current_tick = 0;
 row++;

 if (row >= ROWS_PER_PATTERN) {
 row = 0;
 position++;

 if (position >= mod.song_length) {
 break;
 }
 }
 }
 }

 // Clean up
 snd_pcm_drain(pcm_handle);
 snd_pcm_close(pcm_handle);
 free_mod_file(&mod);

 printf("\nDone!\n");

 return 0;
}

Just build with

<code> gcc -o mod_player modplayer.c -lm -lasound

./mod_player popcorn_remix.mod

</code

Some of my preferred test tracks:

Popcorn Remix

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://modarchive.org/index.php?request=view_by_moduleid&query=104811

2026-01-29 07:05 14/14 Playing .mod tracker music

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

From:
https://wiki.tonytascioglu.com/ - Tony Tascioglu Wiki

Permanent link:
https://wiki.tonytascioglu.com/articles/playing_mod_tracker_music?rev=1748
681290

Last update: 2025-05-31 08:48

https://wiki.tonytascioglu.com/
https://wiki.tonytascioglu.com/articles/playing_mod_tracker_music?rev=1748681290
https://wiki.tonytascioglu.com/articles/playing_mod_tracker_music?rev=1748681290

	Table of Contents
	Playing .mod tracker music

